
July 2017 DocID029868 Rev 2 1/37

www.st.com

UM2124
User manual

Getting started with the six-step firmware library for STM32
Nucleo boards based on STM32F microcontrollers

Introduction
The six-step (trapezoidal) firmware is an easy-to-use and low requirement brushless scalar software
library for three phase permanent magnet (PMSM) and brushless DC motors (BLDC) developed for
STM32 microcontrollers.

The procedure to configure the six-step firmware library for STM32F microcontrollers and drive a BLDC
motor in both open and closed loop is described in the following sections.

The current control method is based on sensorless mode but it is compatible with hall and encoder
speed sensor modes.

The rotor position is reconstructed by BEMF detection.

The six-step library is written in the C programming language and it is based on STM32Cube library.
The IDE tools supported are IAR Workbench, Keil and AC6. The core of this control algorithm is
embedded inside the X-CUBE-SPN7 and X-CUBE-SPN8 firmware package available on the ST web
site.

A prerequisite for using this library is basic knowledge of the C programming language, three phase
motor drives and power inverter hardware. In-depth knowledge of STM32 functions is only required for
customizing existing modules and for adding new ones for complete application development.

Contents UM2124

2/37 DocID029868 Rev 2

Contents

1 Acronyms and abbreviations ... 5

2 Features ... 6

2.1 Six-step software library in X-CUBE-SPN7 and X-CUBE-SPN8
packages .. 6

2.2 Development tools .. 6

2.3 Toolchains ... 7

2.3.1 Programming tools ... 7

3 Implementation of six-step motor control algorithm in STM32
Nucleo microcontroller .. 8

3.1 Introduction to BLDC theory .. 8

3.2 Rotor synchronization ... 9

3.3 Motor driver control ... 9

3.3.1 Current mode control .. 9

3.3.2 Voltage mode control.. 11

3.3.3 Rotor speed measurement ... 11

3.3.4 Commutation, demagnetization delay and zero crossing event....... 13

3.3.5 Zero crossing detection method ... 15

3.3.6 Startup procedure ... 16

4 X-CUBE-SPN7 and X-CUBE-SPN8 software expansion for
STM32Cube .. 18

4.1 Firmware package architecture overview .. 18

4.2 How to identify the six-step library version 21

5 Getting started with the STM32 six-step firmware library 22

6 Designing an application at user level using the firmware library31

6.1 Run a different BLDC motor .. 31

6.2 DAC settings for debug ... 34

6.3 How to use the API function for application development 35

7 Revision history .. 36

UM2124 List of tables

 DocID029868 Rev 2 3/37

List of tables

Table 1: List of acronyms .. 5
Table 2: ROM and RAM requirements ... 6
Table 3: Main mapped peripherals ... 23
Table 4: Header file basic parameters .. 23
Table 5: Header file advanced parameters (open loop control) ... 23
Table 6: Six-step advanced parameters for motor driving (current mode) ... 25
Table 7: Six-step advanced parameters for motor driving (voltage mode) ... 25
Table 8: Six-step general parameters for motor driving ... 26
Table 9: Six-step firmware library not exported functions... 27
Table 10: Six-step firmware library exported functions (APIs).. 27
Table 11: Document revision history .. 36

List of figures UM2124

4/37 DocID029868 Rev 2

List of figures

Figure 1: BLDC motor control sequence .. 8
Figure 2: six-step phase voltage with BEMF sequence and PWM modulation .. 8
Figure 3: Current mode control ... 10
Figure 4: ETR function on current mode control ... 10
Figure 5: Voltage mode control ... 11
Figure 6: Sinusoidal construction .. 12
Figure 7: Trapezoidal construction ... 12
Figure 8: High and low frequency timer signals .. 13
Figure 9: BEMF signal and zero crossing detection ... 14
Figure 10: Demagnetization time .. 14
Figure 11: Demagnetization: delay time (N=3) ... 15
Figure 12: Demagnetization: delay time (N=2) ... 15
Figure 13: BEMF measuring during the OFF-time and ADC sampling .. 16
Figure 14: Alignment and ramp-up generation ... 17
Figure 15: Project workspace on IAR IDE .. 18
Figure 16: X-CUBE-SPN7 software architecture .. 19
Figure 17: X-CUBE-SPN8 software architecture .. 19
Figure 18: X-CUBE-SPN8 folder contents .. 20
Figure 19: six-step library version ... 21
Figure 20: Acceleration rate and number of steps .. 24
Figure 21: six-step firmware library component overview .. 28
Figure 22: six-step main firmware routines: low priority task .. 29
Figure 23: six-step main firmware routines: medium priority task .. 29
Figure 24: six-step main firmware routines: high priority task .. 30
Figure 25: New motor running .. 32
Figure 26: Motor successful initialization .. 33
Figure 27: Motor successful initialization zoom .. 33

UM2124 Acronyms and abbreviations

 DocID029868 Rev 2 5/37

1 Acronyms and abbreviations
Table 1: List of acronyms

Acronym Description

ACC acceleration constant

API application programming interface

ARR autoreload register

BEMF back electromotive force

BLDC brushless DC motor

DAC digital to analog converter

DC direct current

ETR external trigger

IDE integrated development environment

PMSM permanent magnet synchronous motor

PWM pulse-width modulation

UART universal asynchronous receiver transmitter

Features UM2124

6/37 DocID029868 Rev 2

2 Features

2.1 Six-step software library in X-CUBE-SPN7 and X-CUBE-
SPN8 packages

The BLDC software library source code is available on www.st.com.

The six-step library is included in two different firmware packages called X-CUBE-SPN7
(tailored for X-NUCLEO-IHM07M1) and X-CUBE-SPN8 (tailored for X-NUCLEO-IHM08M1)
which provide the compliance with STM32 ODE in STM32 Nucleo expansion platforms.

The main library features are:

 supported trapezoidal six-step method

 sensorless mode: BEMF (back electromagnetic force) voltage on the non-energized
phase is monitored and used to trigger the commutation events

 voltage mode: PWM duty cycle is set directly via a PWM 16-bit timer

 current mode: the inner current loop and an external speed loop are used to control
motor winding current. The output of a speed PI regulator becomes the input of the
current loop that generates the PWM signal.

 DC bus voltage measurement

 fault handling (overcurrent)

 one channel virtual DAC functionality for debugging.

Table 2: ROM and RAM requirements

Configuration ROM (Kbytes) RAM (Kbytes)

Six-step algorithm 7 0.5

X-CUBE-SPN7(1) 24 1

X-CUBE-SPN8(1) 24 1

Notes:

(1)It includes the STM32Cube library (ROM size: 12Kbytes). The remaining memory size is for the compliance with
ST - STM32 ODE

2.2 Development tools

The BLDC firmware library is specific to some hardware platforms, in particular the X-
CUBE-SPN7 with X-NUCLEO-IHM07M1 and the X-CUBE-SPN8 with X-NUCLEO-
IHM08M1.

For evaluation purposes or new user development, it is recommended to use these
hardware platforms together with STM32 Nucleo development board.

The X-CUBE-SPN7 is compatible with the following boards:

 NUCLEO-F030R8

 NUCLEO-F103RB

 NUCLEO-F302R8

 NUCLEO-F401RE

 P-NUCLEO-IHM001

 X-NUCLEO-IHM07M1

The X-CUBE-SPN8 is compatible with the following boards:

UM2124 Features

 DocID029868 Rev 2 7/37

 NUCLEO-F302R8

 NUCLEO-F401RE

 X-NUCLEO-IHM08M1

For the X-NUCLEO-IHM08M1 expansion board with 6-step control, keep the
capacitor C5 mounted; in case of poor motor current regulation during startup,
reduce its value. For further info refer to UM1996, "Getting started with X-
NUCLEO-IHM08M1 low-voltage BLDC motor driver expansion board based on
STL220N6F7 for STM32 Nucleo", available at www.st.com.

2.3 Toolchains

The library has been compiled through different integrated development environment (IDE)
interfaces: IAR EWARM 7.4, Keil MDK-ARM v.5 and AC6 Workbench.

In the X-CUBE packages, it is possible to choose the right project workspace based on the
MCU.

2.3.1 Programming tools

The six-step firmware library is preloaded in the motor control Nucleo pack (P-NUCLEO-
IHM001).

For the other cases:

1 download the X-CUBE-SPN7 or X-CUBE-SPN8 firmware packages from
www.st.com.

2 open the project workspace from the IDE tool available (IAR EWARM, Keil MDK-
ARM v.5 or AC6 Workbench) choosing the right STM32 Nucleo development
board.

3 change the motor and drive parameters

4 compile the firmware

5 upload the binary

When using the STM32 Nucleo development boards no
additional programming tool (for instance external ST-Link, J-
Link or equivalent) is needed as it is already embedded.

Implementation of six-step motor control
algorithm in STM32 Nucleo microcontroller

UM2124

8/37 DocID029868 Rev 2

3 Implementation of six-step motor control algorithm
in STM32 Nucleo microcontroller

3.1 Introduction to BLDC theory

A brushless three phase motor is made of a fixed part (a three winding set called "stator")
and a mobile part (containing a permanent magnet called "rotor").

In BLDC motor control, the electrical cycle is subdivided into six commutation steps. For
each step, the bus voltage is applied to one of the motor three phase windings whereas the
ground is applied to a second winding. The third winding remains open. The successive
steps are executed in the same way except that the motor phase winding changes to
generate a rotating stator field (see Figure 1: "BLDC motor control sequence"): the red
arrow shows the stator flux vector rotation of and the blue arrow shows its direction.

A BLDC motor has a trapezoidal BEMF (back electromagnetic force) induced into the
motor phase windings. The BLDC drive is also called trapezoidal control because of the
phase current shape. This control method allows having the maximum performance in
terms of efficiency and minimum torque ripple since the motor is intrinsically built as BLDC.
Figure 2: "six-step phase voltage with BEMF sequence and PWM modulation" shows the
voltage applied to a phase (BEMF waveform and PWM modulation).

Figure 1: BLDC motor control sequence

Figure 2: six-step phase voltage with BEMF sequence and PWM modulation

UM2124 Implementation of six-step motor control
algorithm in STM32 Nucleo microcontroller

 DocID029868 Rev 2 9/37

3.2 Rotor synchronization

The BLDC drive is a synchronous control drive: the maximum efficiency is achieved if the
commutation between two consecutive steps is performed only when the rotor is in the right
spatial position, which occurs when the BEMF signal and the phase current are
synchronized.

The following methods can be implemented to perform the rotor synchronization:

 sensored drive, which uses position, Hall or encoder sensors to measure the rotor
position.

 sensorless drive, based on the BEMF detection. It analyzes the zero crossing of the
floating phase BEMF signal to establish the commutation point. The match between
the floating phase BEMF signal with respect to the ground point is used to generate
the commutation between two consecutive steps in order to achieve the rotor
synchronization.

The six-step firmware library (X-CUBE-SPN7 or X-CUBE-SPN8) is only based on
sensorless mode, no position sensor is supported. The BEMF signal is analyzed for each
step and a new commutation point is calculated step by step. This method allows rotor
position synchronization with the drive control.

3.3 Motor driver control

The BLDC drive is performed modulating the phase voltage through a PWM sequence that
is generated by two different control methods:

 current mode (peak control): two control loops are needed, one inner and one outer.
The inner loop generates, by hardware (with analog comparator), the PWM sequence
for motor current regulation starting from an analog reference signal; this signal is
generated by the outer loop that contains a digital PI regulator that compares the
speed reference with the motor speed real feedback. It provides the torque control and
inherent current limitation in the windings.

 voltage mode: only one loop is needed, the PI regulator directly generates the PWM
regulating the duty cycle value.

3.3.1 Current mode control

Figure 1: "BLDC motor control sequence" shows the current mode (peak current) driving
method. The inner loop contains all the components to acquire the motor current, amplify
and conditioning the signal to be compared with a reference value. This block output is
directly connected to the ETR timer function (MCU features) that regulate the duration of
the PWM signals. In this case, PWM Ton are managed by the ETR.

Implementation of six-step motor control
algorithm in STM32 Nucleo microcontroller

UM2124

10/37 DocID029868 Rev 2

Figure 3: Current mode control

Figure 4: "ETR function on current mode control" shows how the ETR works during the
normal operation. The red line is the motor current regulated at a fixed current reference
(green). In blue the PWM signals managed by the ETR, each time the motor current
reaches the current reference threshold, the ETR turns PWM signals off.

Figure 4: ETR function on current mode control

UM2124 Implementation of six-step motor control
algorithm in STM32 Nucleo microcontroller

 DocID029868 Rev 2 11/37

3.3.2 Voltage mode control

In the voltage mode driving method, the loop generates the output through a PI regulator
which compares the speed reference to the actual speed motor feedback. No ETR function
is needed because the output calculates the new duty cycle value of PWM signals.

Figure 5: Voltage mode control

The six-step firmware library X-CUBE-SPN8 supports both current and voltage
modes, the X-CUBE-SPN7 only supports the current mode.

3.3.3 Rotor speed measurement

The sinusoidal and the trapezoidal motor structures are mentioned in this document. The
motor structure can be recognized by rotating the motor by hand and connecting a probe to
two motor phases.

The figures below show the signal acquired through an oscilloscope.

Implementation of six-step motor control
algorithm in STM32 Nucleo microcontroller

UM2124

12/37 DocID029868 Rev 2

Figure 6: Sinusoidal construction

Figure 7: Trapezoidal construction

The rotor magnetic field produces a BEMF signal in the stator windings. If the motor is
intrinsically sinusoidal or trapezoidal, the induced BEMF signals are periodic and their
frequency is proportional to the frequency of the motor turns. The proportional coefficient is

UM2124 Implementation of six-step motor control
algorithm in STM32 Nucleo microcontroller

 DocID029868 Rev 2 13/37

the number of motor pole pairs; this number is used to calculate the mechanical speed of
the motor: for instance, with 1000 Hz and 10 pole pairs (or 20 poles) the mechanical
frequency is equal to 100 Hz.

The motor speed in rpm can consequently be calculated by measuring the electrical
frequency of the motor:

Equation 1

𝑀𝑜𝑡𝑜𝑟𝑠𝑝𝑒𝑒𝑑(𝑟𝑝𝑚) =
60

𝑃𝑜𝑙𝑒𝑝𝑎𝑖𝑟𝑛𝑢𝑚𝑏𝑒𝑟 × 𝑠𝑡𝑒𝑝𝑡𝑖𝑚𝑒(𝑠) × 6

where, steptime is the duration (in seconds) of a low frequency timer that regulates the
length of each step. It is multiplied by the number of steps and converted in rpm. The new
value of steptime is managed by the zero crossing calculation function and it is updated at
the frequency of the step generation (Step_N to Step_N+1).

Figure 8: High and low frequency timer signals

3.3.4 Commutation, demagnetization delay and zero crossing event

Since the BLDC is a synchronous motor, the drive main objective is to ensure the rotor
position synchronization with the stator magnetic field. It is possible to demonstrate that the
drive maximum efficiency is obtained by keeping the stator magnetic field with a 90-degree
spatial advance with respect to the rotor magnetic field, achieved by keeping the zero
crossing in the middle of each step (see Figure 9: "BEMF signal and zero crossing
detection").

Since each motor has different inductance values, the current could reach zero with a delay
at each step commutation. This event called demagnetization determines the starting point
for zero crossing detection. The delay is a percentage of the step time (see Figure 10:
"Demagnetization time"). The BEMF signal can be measured when the current reaches the
zero value in the floating phase after the demagnetization delay time.

Implementation of six-step motor control
algorithm in STM32 Nucleo microcontroller

UM2124

14/37 DocID029868 Rev 2

Figure 9: BEMF signal and zero crossing detection

Figure 10: Demagnetization time

This method is managed through firmware (see Figure 11: "Demagnetization: delay time
(N=3)"). Two different modes have been implemented, one is based on look-up-table and
one is based on the current step time duration multiplied by a constant. The first is
implemented in FW version 1.0, the other one only in version 1.1.0 (Please refer to the next
section for further information). Figures Figure 11: "Demagnetization: delay time (N=3)" and
Figure 12: "Demagnetization: delay time (N=2)" show the commutation delay at different N
values: for instance, for N = 3 the delay time is 2 * T (switching period).

UM2124 Implementation of six-step motor control
algorithm in STM32 Nucleo microcontroller

 DocID029868 Rev 2 15/37

Figure 11: Demagnetization: delay time (N=3)

Figure 12: Demagnetization: delay time (N=2)

3.3.5 Zero crossing detection method

In order to synchronize the BLDC motor with the driver, when the BEMF signal becomes
equal to the motor neutral voltage a zero crossing point occurs.

There are two different scenarios that depends on the high frequency PWM signal
generated to modulate the high-side devices that change the way of measuring the BEMF
value, in particular:

Implementation of six-step motor control
algorithm in STM32 Nucleo microcontroller

UM2124

16/37 DocID029868 Rev 2

1. during PWM T-on time applied to the high-side switch, the motor neutral voltage
becomes equal to the bus voltage divided by 2.

2. During PWM T-off time applied to the high-side switch, the motor neutral voltage
becomes 0 V.

The zero crossing can be detected during both the on and the off time of the PWM signal.

The six-step fw library (X-CUBE-SPN7 and X-CUBE-SPN8) is only based on T-off mode
and the detection of the zero crossing point is performed by comparing the BEMF
converted value to a fixed threshold. Figure 13: "BEMF measuring during the OFF-time and
ADC sampling" shows the BEMF measuring during the T-OFF of T1 switch when the
phase C is floating and the ADC sampling method measures the BEMF signals, Vbus,
temperature, motor current etc.

Figure 13: BEMF measuring during the OFF-time and ADC sampling

3.3.6 Startup procedure

To perform a sensorless control on the BLDC motor, the BEMF must reach an appreciable
value to be readable. Since the BEMF amplitude depends on the rotor speed, it requires
the motor to rotate at the speed above a specific threshold. Thus, it is important to
implement an asynchronous startup strategy.

The following phases are necessary to start the motor up and begin the closed loop control
with BEMF detection:

 alignment phase

 ramp generation phase

3.3.6.1 Alignment phase

During the alignment phase, the rotor is forced at a specified position through a specific
switch configuration. A fixed current (managed by firmware) is maintained to move the rotor
at the closest pole pair position. The alignment is performed through the choice of a
specific step number (for instance, if the step number 1 is the starting point, the choice is
step number 6).

UM2124 Implementation of six-step motor control
algorithm in STM32 Nucleo microcontroller

 DocID029868 Rev 2 17/37

3.3.6.2 Ramp generation phase

To perform a good BEMF control, start the motor with a ramp profile of speed: a fixed and
controlled current (current mode) is maintained to run and accelerate the motor. The
control system monitors the motor speed and check if this value reaches a specified
threshold (managed by the firmware: red circle). In case of a positive check, the counter of
zero crossing events starts and at a specific value (managed by the firmware: green circle)
determines the starting point of the closed loop operation (see the figure below). This
condition is reached if the number of zero crossing events reach a threshold (set through
the firmware).

Figure 14: Alignment and ramp-up generation

X-CUBE-SPN7 and X-CUBE-SPN8 software
expansion for STM32Cube

UM2124

18/37 DocID029868 Rev 2

4 X-CUBE-SPN7 and X-CUBE-SPN8 software
expansion for STM32Cube

4.1 Firmware package architecture overview

The firmware example in X-CUBE-SPN7 and X-CUBE-SPN8 is provided for three different
IDE tools, IAR EWARM, Keil MDK-ARM, AC6 Workbench. In this case the IAR IDE
workspace appears as shown in the following figure.

Figure 15: Project workspace on IAR IDE

The firmware solution is built around three independent levels that can easily interact with
each other as described in Figure 16: "X-CUBE-SPN7 software architecture" and Figure
17: "X-CUBE-SPN8 software architecture".

UM2124 X-CUBE-SPN7 and X-CUBE-SPN8 software
expansion for STM32Cube

 DocID029868 Rev 2 19/37

Figure 16: X-CUBE-SPN7 software architecture

Figure 17: X-CUBE-SPN8 software architecture

The software architecture is mainly composed by:

 Middleware

 Examples

 Driver(BSP/Component).

Since the X-NUCLEO-IHM07M1 contains the L6230 driver and the X-NUCLEO-IHM08M1
contains the L6398 driver, in the firmware package, inside BSP/Components, the specific
driver is provided according to the power board used (see Figure 18: "X-CUBE-SPN8
folder contents").

X-CUBE-SPN7 and X-CUBE-SPN8 software
expansion for STM32Cube

UM2124

20/37 DocID029868 Rev 2

Figure 18: X-CUBE-SPN8 folder contents

 Middleware: the middleware provided in the X-CUBE-SPN7 and X-CUBE-SPN8
packages contains the motor control algorithm core: six-step library (6Step_Lib.c/h)
and interface files (stm32f302_ihm0xm1.c/h). The interface file includes the map of
STM32 MCU peripherals used (for instance, advanced TIMx, general TIMx, ADCx,
DACx, UART etc.) to operate with the MC six-step library. This file must be updated
according to the modification directly done or through STM32CubeMX software by the
user, if channels or internal peripherals are modified with respect to the default
configuration. At middlewares level a serial communication based on UART via an
external PC terminal emulator has been included in the X-CUBE-SPN7 and X-CUBE-
SPN8 packages (see the UART_UI.c/h and Figure 18: "X-CUBE-SPN8 folder
contents").

 Examples: the X-CUBE-SPN7 and X-CUBE-SPN8 packages contain an application
layer for further code development. This folder is created with Cube MX software and
it also contains the main file for firmware initialization (peripherals, MC_6Step and
UART communication). In addition, a specific file (MC_SixStep_param.h) has been
added to provide the complete list of parameters for the six-step library at application
level. The stm32fxxx_it.c file contains the starting point for UART communication and
defines all interrupt handlers.

UM2124 X-CUBE-SPN7 and X-CUBE-SPN8 software
expansion for STM32Cube

 DocID029868 Rev 2 21/37

4.2 How to identify the six-step library version

In order to identify the version of six-step firmware library it is recommended to open the
“6Step_Lib.c” file and check for the versioning as shown in the following figure.

Figure 19: six-step library version

Getting started with the STM32 six-step firmware
library

UM2124

22/37 DocID029868 Rev 2

5 Getting started with the STM32 six-step firmware
library

The firmware package that contains the six-step library is based on a specific architecture
to simplify the interaction among different layers and to create a solid and easy-to-use
structure for further implementation at user level.

The main files are contained inside the example and middleware folders, in particular if we
refer to X-CUBE-SPN8 with NUCLEO-F302R8:

 Example/User/
a. Main.c (MCU initialization for peripherals and six-step library entry point).
b. MC_SixStep_param.h (six-step library list of main parameters for motor driving).
c. stm32F302_nucleo_ihm08m1.c/h (interface file between the 6Step library and

hardware used).
d. stm32f3xx_hal_msp.c (standard STM32Cube HAL file for MCU configuration).
e. stm32f3xx_it.c (STM32Cube HAL file for MCU interrupt request and handling

function).

 Middlewares/MC 6Step lib/
a. 6Step_Lib.c (6Step algorithm main file).

 Middlewares/UART serial com/
a. UART_UI.c (UART communication main file).

 BSP/
a. L6398.c (component file for motor control driver handling).
b. stm32f3xx_nucleo.c (this file provides set of firmware functions to manage X-

NUCLEO components, as LCD, Joystick or microSD card).
c. X-NUCLEO-IHM08M1.c (this file provides a set of firmware functions to manage

X-NUCLEO evaluation boards).

The Main.c file contains all the MCU initialization generated by the STM32CubeMX
software (TIMx, ADCx, DACx, GIPOx, UART etc) and the entry point for the six-step
firmware library. Including the header file “6Step_Lib.h” and the six-step init call
“MC_SixStep_INIT()”, the user level is linked to the motor library and all APIs functions are
available.

The stm32f3xx_it.c file contains the handling function for all interrupt routines defined by
the STM32CubeMX. The user code is included inside the dedicated area identified by the
STM32Cube library by "USER CODE BEGIN / USER CODE END" labels.

The stm32f3xx_hal_msp.c file contains the code for MSP STM32Cube library initialization
generated by STM32CubeMX.

The stm32F302_nucleo_ihm08m1.c file contains all code with specific hardware
dependencies and the initialization function that depends on the STM32 Nucleo board or
microcontroller used. The stm32F302_nucleo_ihm08m1.h file shows the list of the real
MCU peripherals used (for instance TIM1, ADC1, DAC1). It is the interface between the
MCU and the six-step library: for instance, if the high frequency timer (PWM) is TIM1, this
file maps the “htim1” (MCU handle structure) with a generic name used by the library,
HF_TIMx. If the user changes the timer, the update of this file with the right used peripheral
is mandatory.

UM2124 Getting started with the STM32 six-step firmware
library

 DocID029868 Rev 2 23/37

The table below shows the list of the main peripherals mapped:

Table 3: Main mapped peripherals

Six-step library name MCU structure name

#define HF_TIMx htim1

#define LF_TIMx htim6

#define ADCx hadc1

#define REFx htim16

#define UART huart2

The MC_SixStep_param.h file contains all the parameters to configure the motor driving
with the six-step algorithm (for instance the control type (current/voltage mode), the open
loop initial current reference, BEMF threshold, speed PI regulator (Kp, Ki parameters),
alignment time (msec), target speed (rpm) etc).

Table 4: Header file basic parameters

Constant name Description
Unit / max.
and typical

value

NUM_POLE_PAIRS Number of BLDC motor pole pairs 16 bit unsigned

DIRECTION Set the motor direction: (0) for CW or (1) for CCW. 0 or 1

TARGET_SPEED
Target speed in the closed loop phase when the
potentiometer is disabled

RPM, 16 bit
unsigned

POTENTIOMETER
Enable the potentiometer for speed regulation in closed
loop (1 for enable). It doesn’t change the speed threshold
control during the open loop phase set by default.

0 or 1

VOLTAGE_MODE
Enable the voltage mode control. By default the current
mode is enabled (voltage mode disabled).

0 or 1

Table 5: Header file advanced parameters (open loop control)

Constant name Description

Unit /
max. and

typical
value

STARTUP_CURRENT_REFERENCE(1)

Startup current reference. It is a digital value
with the maximum value to be set by the
UPPER_OUT_LIMIT parameter. The formula
to calculate this value is:

𝑅𝑆𝐻𝑈𝑁𝑇(𝑜ℎ𝑚) × 𝐼𝑆𝐻𝑈𝑁𝑇(𝐴) × 𝑂𝑝𝐴𝑚𝑝𝐺𝑎𝑖𝑛
3.3(𝑉)

 × UPPER_OUT_LIMIT

16 bit
unsigned

ACC
Mechanical acceleration rate. This digital
value identifies the slope of the acceleration
during the time.

32bit
unsigned,

RPM/s

MINIMUM_ACC
Minimum mechanical acceleration rate (for
high inertia motor)

32bit
unsigned,

RPM/s

Getting started with the STM32 six-step firmware
library

UM2124

24/37 DocID029868 Rev 2

Constant name Description

Unit /
max. and

typical
value

NUMBER_OF_STEPS(1)

Maximum number of steps for acceleration
during the open loop phase. If the closed
loop validation is not completed at the end of
this time a speed fault error will be generated

16bit
unsigned

TIME_FOR_ALIGN Time for alignment
msec,
16bit

unsigned

BUTTON_DELAY
Delay time to enable push button for new
command

msec,
32bit

unsigned

NUMBER_ZCR
Number of zero crossing events in sequence
for closed loop validation

32bit
unsigned

Notes:

(1)See Figure 20: "Acceleration rate and number of steps": the graphs show the different ACC values. At
each step number a new speed value is generated. A “SPEED_FDBK” error is generated if the system reaches
the maximum NUMBER_OF_STEPS before the closed loop starts (for instance, if the ACC value is too low to
reach the target speed).

Figure 20: Acceleration rate and number of steps

UM2124 Getting started with the STM32 six-step firmware
library

 DocID029868 Rev 2 25/37

Table 6: Six-step advanced parameters for motor driving (current mode)

Closed loop control Current mode Unit

SPEED_LOOP_TIME Time for new execution of speed loop
msec, 16 bit

unsigned

KP_GAIN Proportional term of PI regulator 16 bit signed

KI_GAIN Integral term of PI regulator 16 bit signed

KP_DIV Divider for proportional term of PI regulator
16 bit signed,
power of two

KI_DIV Divider for integral term of PI regulator
16 bit signed,
power of two

LOWER_OUT_LIMIT (1)
Minimum output value of PI regulator (minimum
current reference for comparator)

16 bit signed

UPPER_OUT_LIMIT
Maximum output value of PI regulator (maximum
current reference for comparator)

16 bit signed

MAX_POT_SPEED Maximum Speed regulated by potentiometer
rpm, 16 bit
unsigned

MIN_POT_SPEED Minimum Speed regulated by potentiometer
rpm, 16 bit
unsigned

VAL_POT_SPEED_DIV(2) Validation potentiometer speed divider Constant

INITIAL_DEMAGN_DELAY
Initial value for demagnetization time for BEMF
detection. It is a multiple of high frequency PWM
signal

16 bit unsigned

Notes:

(1)The reference value of the comparator (embedded in the board) is calculated according to the
UPPER_OUT_LIMIT of the PI regulator:

𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑆𝑒𝑡𝑣𝑎𝑙𝑢𝑒 =
𝑆𝐼𝑋𝑆𝑇𝐸𝑃_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠. 𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑈𝑃𝑃𝐸𝑅_𝑂𝑈𝑇_𝐿𝐼𝑀𝐼𝑇
𝑥𝐴𝑅𝑅𝑇𝐼𝑀𝑥

 , where SIXSTEP_parameters.Current_Reference is the output of the PI regulator and ARRTIMxis the autoreload

value of a base timer. In case Current_Reference_Setvalue = ARRTIMx, the analog signal (as input of comparator)
is generated at 3V3 constant and it is compared to the current real measurement.

(2)At the startup the potentiometer is used to set the speed threshold for closed loop validation. It is possible to
increase this value (VAL_POT_SPEED_DIV) to reduce the maximum threshold value respect to the maximum
speed.

Table 7: Six-step advanced parameters for motor driving (voltage mode)

Closed loop control Voltage mode Unit

KP_GAIN_VM(1) Proportional term of PI regulator 16 bit signed

KI_GAIN_VM Integral term of PI regulator 16 bit signed

KP_DIV_VM
Divider for proportional term of PI
regulator

16 bit signed, power of two

KI_DIV_VM
Divider for integral term of PI
regulator

16 bit signed, power of two

LOWER_OUT_LIMIT_VM
Minimum output value of PI
regulator

16 bit signed

UPPER_OUT_LIMIT_VM
Maximum output value of PI
regulator

16 bit signed

Getting started with the STM32 six-step firmware
library

UM2124

26/37 DocID029868 Rev 2

Closed loop control Voltage mode Unit

DUTY_CYCLE_INIT_VALUE
(2)

Duty cycle initial value
16 bit unsigned (max PWM

ARR)

Notes:

(1)This parameter is available for X-CUBE-SPN8 only
(2)The maximum duty cycle value is limited by the autoreload (ARR) register of high frequency timer.

Table 8: Six-step general parameters for motor driving

Closed loop control Voltage mode Unit

SYNCHRONOUS_RECTIFICATION(1)
Enable the complementary output of high
frequency leg

0 or 1

BEMF_THRSLD_DOWN BEMF threshold for down direction
16 bit

unsigned,
ADC value

BEMF_THRSLD_UP BEMF threshold for up direction
16 bit

unsigned,
ADC value

FILTER_DEEP
Number of elements for speed or bemf
filtering

16 bit
unsigned

HFBUFFERSIZE
Buffer size for potentiometer value filtering
at the High-frequency ADC conversion

16 bit
unsigned

ADC_SPEED_TH Fixed threshold to change the target speed
16 bit

unsigned

BEMF_CONSEC_DOWN_MAX
Maximum value of BEMF Consecutive
Threshold Falling Crossings Counter in
closed loop (Motor stall detection)

8 bit unsigned

BEMF_CNT_EVENT_MAX
Maximum number of BEMF Counter in
open loop (Motor stall detection)

16 bit
unsigned

GPIO_ZERO_CROSS
Enable the GPIO toggling output for zero
crossing detection

0 or 1

GPIO_COMM
Enable the GPIO toggling output for
commutation detection.

0 or 1

DEMO_START_TIME (2) Time to keep the motor in run mode
msec, 16 bit

unsigned

DEMO_STOP_TIME
Time (msec) to keep the motor in stop
mode

msec, 16 bit
unsigned

Notes:

(1)This parameter is available for X-CUBE-SPN8 only
(2)This time is available if the DEMO mode is selected during the compiling phase

UM2124 Getting started with the STM32 six-step firmware
library

 DocID029868 Rev 2 27/37

6Step_Lib.c contains the six-step library and the main functions are listed in the following
tables.

Table 9: Six-step firmware library not exported functions

Function Result

MC_SixStep_TABLE() Sets the peripherals (TIMx, GPIO etc.) for each step

MC_SixStep_ARR_step() Generates the ARR value for low frequency TIM during start-up

MC_SixStep_Ramp_Motor_calc()
Calculates the acceleration profile step by step for motor during
start-up

MC_SixStep_NEXT_step()
Generates the next step number according to the direction (CW
or CCW)

MC_Task_Speed() Speeds loop with PI regulator

MC_Bemf_Delay() Calculates the demagnetization delay time

Table 10: Six-step firmware library exported functions (APIs)

Function Result

MC_SixStep_INIT()
Initializes the main variables for motor driving from
MC_SixStep_param.h

MC_SixStep_RESET() Resets all variables used for 6Step control algorithm

MC_StartMotor() Starts the motor

MC_StopMotor() Stops the motor

MC_Set_Speed() Sets the new motor speed value

MC_EXT_button_SixStep() Handles the push button event

The exported APIs functions are inside the header file 6Step_Lib.h. It contains also all the
variables and structures for the six-step algorithm. At the base of the MC driver, three main
tasks run at different frequencies and with different priority levels, according to the specific
function to cover, in particular (see Figure 22: "six-step main firmware routines: low priority
task", Figure 23: "six-step main firmware routines: medium priority task" and Figure 24:
"six-step main firmware routines: high priority task"):

1. High priority task: it is dedicated to the high frequency function (advanced TIMx PWM
generation, ADC reading) and it is managed at the highest priority. This frequency can
be modified through the STM32CubeMX software, i.e. TIM1_ARR.

2. Medium priority task: it is dedicated to the medium frequency function (general TIMx
for step timing) and it is managed at medium priority. This frequency can be modified
through the STM32CubeMX software, i.e. TIM6_ARR (for STM32F302-Nucleo).

3. Low priority task: it is dedicated to the low frequency function (SysTick timer for Speed
Loop timing) and it is managed at the lowest priority. The
MC_SysTick_SixStep_MediumFrequencyTask() is called at SysTick frequency (1
msec), while the speed loop function is managed by SPEED_LOOP_TIME (msec)
defined in the MC_SixStep_param.h file.

The MC_Bemf_Delay() is implemented in two different modes:

 look-up-table (six-step lib vers. 1.0.0)

 calculation based on current step duration (six-step lib vers. 1.1.0)

Getting started with the STM32 six-step firmware
library

UM2124

28/37 DocID029868 Rev 2

Look-up-table

The first method is based on a fixed table made by default values obtained by the
experimental test. According to the real motor speed, the demagnetization value is chosen
through a table defined inside stm32Fxxx_nucleo_ihm07m1.c file. In particular, the

SIXSTEP_parameters.speed_fdbk_filtered returns the filtered speed value (RPM)

and it is compared to different thresholds: for instance, if the speed is comprised between
3300 rpm and 3650 rpm, the current demagn_value is set to DEMAGN_VAL_8 constant. It
means that If the real speed of the motor is 3000 rpm, after a step commutation, a delay
time is maintained for (8-1) x T seconds, where T is the PWM switching period. After this
time the algorithm starts detecting the BEMF. The code inside the
stm32Fxxx_nucleo_ihm07m1.c file is:

 else if (SIXSTEP_parameters.speed_fdbk_filtered<=3650 &&

SIXSTEP_parameters.speed_fdbk_filtered>3300)

 {

 SIXSTEP_parameters.demagn_value = DEMAGN_VAL_8;

 }

Calculation based on current step duration

The second method calculates the delay time according to the duration of the step
expressed in digital value (autoreload register of timer). This time is divided by a constant
(“ARR_divider”, which can be modified through the firmware) and the result value is the
number (N) of PWM period after that the BEMF detection algorithm starts (see Figure 11:
"Demagnetization: delay time (N=3)"and Figure 12: "Demagnetization: delay time (N=2)").

UART_UI.c includes the code for UART communication through PC terminal (for instance,
hyper terminal, Putty, xCOM software).

Figure 21: six-step firmware library component overview

UM2124 Getting started with the STM32 six-step firmware
library

 DocID029868 Rev 2 29/37

Figure 22: six-step main firmware routines: low priority task

Figure 23: six-step main firmware routines: medium priority task

Getting started with the STM32 six-step firmware
library

UM2124

30/37 DocID029868 Rev 2

Figure 24: six-step main firmware routines: high priority task

UM2124 Designing an application at user level using the
firmware library

 DocID029868 Rev 2 31/37

6 Designing an application at user level using the
firmware library

6.1 Run a different BLDC motor

The X-CUBE-SPN7 and X-CUBE-SPN8 software expansion provided for X-NUCLEO-
IHM07M1 and X-NUCLEO-IHM08M1 power boards are configured for low inductance/high
speed motor by default. Since each motor has its specifications, the X-CUBE firmware
packages are deisgned to simplify the way of spinning different kinds of motors through few
changes.

A header file (MC_SixStep_param.h) includes several parameters in two sections: basic
and advanced.

In the first one, it is possible to change the main parameters: for instance, motor pole pairs,
clockwise or counterclockwise motor direction, target speed or potentiometer selection.

In the advance section, instead, it is possible to set the PI parameters, define the alignment
time or the acceleration rate during startup, change the zero crossing threshold and a lot of
parameters useful to the system fine tuning.

For better understand how to spin a generic BLDC motor, the procedure suggested is the
following (in this case it refers to the X-NUCLEO-IHM08M1 expansion board plus the
NUCLEO-F302R8 MCU board):

1. open the X-CUBE-SPN8 firmware package related to the NUCLEO-F302R8 board
2. open the MC_SixStep_param.h file and set the main parameters, in particular:

a. motor pole pairs
b. STARTUP_CURRENT_REFERENCE
c. ACC (for high inertia motor significantly reduce the default value)
d. TIME_FOR_ALIGN
e. MIN_POT_SPEED

3. connect two voltage passive probes to the default MCU pin (PC7 and PC10) for zero
crossing and commutation event monitoring

4. compile the code and upload it into the STM32 Nucleo board
5. rotate the potentiometer at the minimum value
6. power on the X-NUCLEO board and press the blue button on the STM32 Nucleo

board.

If the values modified above are correct and the default parameters are good for the
current motor connected, the system starts as shown in the following figure.

Designing an application at user level using the
firmware library

UM2124

32/37 DocID029868 Rev 2

Figure 25: New motor running

In Figure 22: "six-step main firmware routines: low priority task" the green signal shows the
motor phase current whereas the yellow channel shows the commutation event. When PC7
is connected, the probe shows the zero crossing event.

As discussed in the previous section, the zero crossing counting starts when the speed
threshold (potentiometer initial position) is reached during the startup. After this event a
toggle signal is generated as output.

A successful motor initialization is shown in Figure 26: "Motor successful initialization": the
alignment time is set to 100 msec, the speed threshold is set to 700 rpm and the target
speed is 3000 rpm. After 300 m sec the motor spins in closed loop (the blue indicates the
starting point and the purple underlines the real motor speed).

Figure 27: "Motor successful initialization zoom" shows the motor current in zoom view
during the open loop phase. The initial current is limited to 5 A and the current mode is
enabled.

UM2124 Designing an application at user level using the
firmware library

 DocID029868 Rev 2 33/37

Figure 26: Motor successful initialization

Figure 27: Motor successful initialization zoom

Designing an application at user level using the
firmware library

UM2124

34/37 DocID029868 Rev 2

In case of different current views, unsuccessful motor iniziatization or fault (visible through
the SIXSTEP_parameters.STATUS variable), it is suggested to adjust the parameters
mentioned above as follows:

Current (peak) control during the open loop

1. check if TIME_FOR_ALIGN (alignment time) has the right duration to align the motor
2. check if the NUM_POLE_PAIRS is correct
3. check STARTUP_CURRENT_REFERENCE (current peak threshold) during the open

loop stage. In case the motor doesn’t move or stalls, increase this value. If this value
is too big, an OVERCURRENT error occurs disabling the PWMs.

4. check if the ACC (acceleration time) is too big: in case of big inertia, reduce the value
to have a smooth start in more time. If this parameter is too small, the speed threshold
for closed loop validation might never be reached and a STARTUP_FAILURE error
occurs.

5. check the number NUMBER_ZCR (zero crossing event) for open loop end and closed
loop validation phase.

6. plot the zero crossing (ZC) and step commutation event through the default GPIO pin
(for instance, PC7 and PC10, GPIO_COMM and GPIO_ZERO_CROSS set to 1).
When the ZC signal appears, the speed is validated and the counting of ZC
consecutive events (n_zcr_startup ++) is started. If this number reaches the
NUMBER_ZCR consecutively, the closed loop control starts. In case of no
consecutive ZC detection the algorithm resets the counter (n_zcr_startup = 0) and
increase another counter (cnt_bemf_event ++). This last counter generates a
STARTUP_BEMF_FAILURE if it reaches the BEMF_CNT_EVENT_MAX.

7. reduce the potentiometer to decrease the speed threshold for closed loop validation
(this control is always enabled also if the potentiometer parameter is set to 0, but in
this case it doesn’t provide speed change during the closed loop).

Voltage control during the open loop

The procedure is the same as the one shown in the previous section, except for point 3,
which is replaced by the following step:

check the DUTY_CYCLE_INIT_VALUE which sets the initial duty cycle value fixed for the
entire open loop phase. In case the motor doesn’t start, increase this value up to the high
frequency PWM autoreload value (see main.c file, inside the TIMx configuration).

Closed loop control (current and voltage mode)

Check the KP_GAIN and KI_GAIN (current mode) or KP_GAIN_VM and KI_GAIN_VM
(voltage mode) and plot the phase current to see the PI regulator reaction during the
transition from open to closed loop and during the speed change (for instance, using the
potentiometer). These values are not calculated by default and it is suggested to modify
them during the test.

In case of overcurrent error, reduce the reaction of the PI regulator with lower values of Kp
and Ki.

6.2 DAC settings for debug

For debugging, it is possible to use the DAC peripheral and configure the six-step library to
drive the signal. The function SET_DAC_value (dac_value) allows converting the variable
“dac_value” in 16 bit format (with no sign) in analog signal so it is possible to monitor the
motor speed (set by default) or the potentiometer value through an external oscilloscope
attached to the configured pin. By default PA4 pin is configured, it is accessible through the
ST morpho connector and it is typically connected to DAC_CH1 (NUCLEO-F302R8). If the
user chooses a different pin or peripheral, the stm32Fxxx_nucleo_ihm0xm1.h file must be

UM2124 Designing an application at user level using the
firmware library

 DocID029868 Rev 2 35/37

modified as described in Section 5: "Getting started with the STM32 six-step firmware
library" (the DAC peripheral is on by default):

#define DAC_ENABLE 1

#define DACx hdac

#define DACx_CH DAC1_CHANNEL_1

#define DACx_ALIGN DAC_ALIGN_12B_L

6.3 How to use the API function for application development

In case of code development the user level is simplified with several APIs provided by the
six-step library. For instance, the main APIs exported are mentioned in Table 11: "Six-step
firmware library exported functions (APIs)":

 MC_SixStep_INIT()

 MC_SixStep_RESET()

 MC_StartMotor()

 MC_StopMotor()

 MC_Set_Speed(new_speed)

 MC_EXT_button_SixStep()

These functions are available at application layer (main.c) and can start or stop the motor
or change the speed during the normal operation.

The MC_SixStep_INIT() initializes the six-step library and it is normally added in the first
lines of the main.c file, after MCU peripherals configuration. Thus, the motor control
algorithm is configured and ready to start. No input parameter is required.

The MC_SixStep_RESET resets all the main variables with the default values used for the
six-step algorithm. It is called inside the MC_StopMotor() command: for instance, if a fault
occurs or in case of control manual stop . No input parameter is required.

The MC_StartMotor() is the main command used to start the six-step algorithm; for
instance, the PWM timer, the ADC conversions, the low frequency timer etc. No input
parameter is required.

The MC_StopMotor() is the main command used to stop the six-step algorithm: for
instance, the PWM timer, the ADC conversions, the low frequency timer etc. When the
control has been disabled, the MC_SixStep_RESET is called. No input parameter is
required.

The MC_Set_Speed (new_speed) is the main command used to set a new speed value for
the motor during the closed loop stage. The input variable is defined as 16 bit unsigned and
it is expressed in RPM unit. This parameter is used only if the potentiometer parameter is
set to 0. No ramp profile is generated.

The MC_EXT_button_SixStep() is the command called by the
HAL_GPIO_EXTI_Callback(), see the file stm32Fxxx_nucleo_ihm0xm1.c associated to an
external push button. It sends a start or a stop motor function on the basis of the control
previous status: for instance, if the six-step algorithm is in run state, it stops the control; if it
is in idle state, it sends a start motor function.

Revision history UM2124

36/37 DocID029868 Rev 2

7 Revision history
Table 11: Document revision history

Date Version Changes

09-Nov-2016 1 Initial release.

05-Jul-2017 2

In Section 2.2: "Development tools": added suggestions for FOC
settings (C3, C5 and C7 capacitors).

Throughout text: added references to X-CUBE-SPN7 and X-CUBE-
SPN8.

UM2124

 DocID029868 Rev 2 37/37

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

